Linear sufficiency in the partitioned linear model

Simo Puntanen

University of Tampere, Finland

Abstract

A linear statistic Fy, where F is an $f \times n$ matrix, is called linearly sufficient for estimable parametric function $K\beta$ under the model $M = \{y, X\beta, V\}$, if there exists a matrix A such that AFy is the BLUE for $K\beta$. In this talk we consider some particular aspects of the linear sufficiency in the partitioned linear model where $X = (X_1 : X_2)$ with β being partitioned accordingly. Our considerations are based on the properties of relevant covariance matrices and their expressions via certain orthogonal projectors. The connection between the transformed model $M_t = \{Fy, FX\beta, FVF'\}$ and the concept of linear sufficiency will have a crucial role. Particular attention will be paid to the situation under which adding new regressors (in X_2) does not affect the linear sufficiency of Fy.

Thanks for helpful discussions go to Augustyn Markiewicz and Radosław Kala.

Keywords

Best linear unbiased estimator, generalized inverse, linear model, linear sufficiency, orthogonal projector, Löwner ordering, transformed linear model.

References

- Baksalary, J. K. and R. Kala (1981). Linear transformations preserving best linear unbiased estimators in a general Gauss-Markoff model. Ann. Stat., 9, 913–916.
- [2] Baksalary, J. K. and R. Kala(1986). Linear sufficiency with respect to a given vector of parametric functions. J. Stat. Plan. Inf., 14, 331–338.
- [3] Drygas, H. (1983). Sufficiency and completeness in the general Gauss-Markov model. Sankhyā Ser. A, 45, 88–98.
- [4] Kala, R., A. Markiewicz and S. Puntanen (2016). Some further remarks on the linear sufficiency in the linear model. *Applied and Computational Matrix Analysis: Proceedings of the MatTriad-2015 Conference* (Natalia Bebiano, editor), Springer, to appear.
- [5] Kala, R., S. Puntanen and Y. Tian (2015). Some notes on linear sufficiency. *Statist. Papers*, available online.