The 123 Theorem of Probability Theory and Copositive Matrices

Alexander Kovacec ${ }^{1}$, Miguel Moreira ${ }^{2}$, and David P. Martins ${ }^{3}$
${ }^{1}$ University of Coimbra, Portugal
${ }^{2}$ Instituto Superior Técnico, Lisbon, Portugal
${ }^{3}$ Oxford University, England

Abstract

Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form $\operatorname{Prob}(\|X-Y\| \leq b) \leq c \operatorname{Prob}(\|X-Y\| \leq a)$. We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving $X+Y$ and $X-Y$, due to Siegmund-Schultze and von Weizsäcker [3] as generalized by Dong, Li and $\mathrm{Li}[2]$. Furthermore we formulate a version of above inequalities as an integral inequality for monotone functions.

Keywords

Probabilistic inequalities, Copositivity, Integral inequality

References

[1] Alon, N. and R. Yuster (1995). The 123 Theorem and Its Extensions. J. of Combin. Theory, Ser. A 72, 321-331.
[2] Dong, Z., J. Li, and W.V. Li (2014). A Note on Distribution-Free Symmetrization Inequalities. J. Theor. Probab. (DOI 10.1007/s10959-014-0538-z).
[3] Siegmund-Schultze, R. and H. von Weizsäcker (2007). Level crossing probabilities I: One-dimensional random walks and symmetrization, $A d v$. Math. 208, 672-679.

